Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells

نویسندگان

  • Bailu Si
  • Sandro Romani
  • Misha Tsodyks
چکیده

The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path integration even when the recurrent connections are subject to random perturbations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Path Integration in Continuous Attractor Network Models of Grid Cells

Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets trigge...

متن کامل

Cognitive Mapping Based on Conjunctive Representations of Space and Movement

It is a challenge to build robust simultaneous localization and mapping (SLAM) system in dynamical large-scale environments. Inspired by recent findings in the entorhinal-hippocampal neuronal circuits, we propose a cognitive mapping model that includes continuous attractor networks of head-direction cells and conjunctive grid cells to integrate velocity information by conjunctive encodings of s...

متن کامل

Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics.

We present a model that describes the generation of the spatial (grid fields) and temporal (phase precession) properties of medial entorhinal cortical (MEC) neurons by combining network and intrinsic cellular properties. The model incorporates network architecture derived from earlier attractor map models, and is implemented in 1D for simplicity. Periodic driving of conjunctive (position × head...

متن کامل

A hybrid oscillatory interference/continuous attractor network model of grid cell firing.

Grid cells in the rodent medial entorhinal cortex exhibit remarkably regular spatial firing patterns that tessellate all environments visited by the animal. Two theoretical mechanisms that could generate this spatially periodic activity pattern have been proposed: oscillatory interference and continuous attractor dynamics. Although a variety of evidence has been cited in support of each, some a...

متن کامل

Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions

Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid-like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014